

QUIZ - (Kinematics I)

Instruction: Correct answer +2 wrong -1

Time: 30 minutes Marks: 40

1. Initial velocity of a particle moving along a straight line is 10 m/s and retardation is 2m/s². The distance covered by it in 5th second of the motion is

(A) 1 m

(B) 50 m

(C) 19 m

(D) 85 m

2. For the v-t graph, distance travelled by body in 5 sec. is

(A) 20 m

(B) 40 m

(C) 80 m

(D) 100 m

3. The graph represents displacement of two particles with time. Ratio of velocity of A to velocity of B is

(A) $\sqrt{3}$: 1

(B) 1:1

(C) 1:2

(D) 1 : $\sqrt{3}$

4. A particle is projected with v_0 at angle of 30^0 with vertical. Its average velocity for its time of flight is

(A) $v_0 \sin 30$

(B) v₀ cos 30

(C) v₀ tan 30

(D) none of the above

5. Two vectors having magnitudes 8, 10 can have maximum & minimum value of magnitude of their resultant as

(A) 12, 6

(B) 10, 3

(C) 18, 2

(D) none of these

6. At what angle should the two forces 2P and $\sqrt{2}$ P act so that the resultant force is P $\sqrt{10}$

(A) 45°

(B) 60°

(C) 90°

(D) 120°

- 7. Two billiard balls are rolling on a flat table. One has velocity component $v_x = 1$ m/sec, $v_y = \sqrt{3}$ m/s and the other has components $v_x = 2$ m/s, $v_y = 2$ m/s along two perpendicular direction. If both the balls start moving form same point, then angle between their path is (A) 60° (B) 45° (C) 22.5° (D) 15°
- 8. A particle undergoes three successive displacements given by $\vec{s}_1 = \sqrt{2}$ m North-East $\vec{s}_2 = 2$ m due south and $\vec{s}_3 = 4$ m, 30^0 north of west, then magnitude of net displacement.

(A) $\sqrt{14+4\sqrt{3}}$

(B) $\sqrt{14-4\sqrt{3}}$

(C) $\sqrt{14}$

(D) none of these

TRAVAIL BEYOND EXCELLENCE

- A particle is projected horizontally in air at a height of 25 m from the ground with a speed of 9. 10 m/s. The speed of the particle after 2 seconds will be
 - (A) 10 m/s
- (B) 22.4 m/s
- (C) 25 m/s
- (D) 28.4 m/s
- 10. A ball is projected from ground with a speed of 20 m/s at an angle of 45° with horizontal. There is a wall of 25 m height at a distance of 10 m from the projection point. The ball will hit the wall at a height of
- (B) 7.5 m
- (C) 10 m
- 11. A river 500 m wide is flowing with 5 m/s. A swimmer, whose velocity in still water 4 m/s swims at an angle of 60° with normal to the river. The time taken by the swimmer to reach the opposite bank is
 - (A) 125 sec.

(B) $\frac{500}{3}$ sec.

(C) 250 sec.

- (D) 100 sec.
- 12. Three persons P, Q and R of same mass travel with same speed u along an equilateral triangle of side 'd' such that each one faces the other always. After how much time will they meet each other:
 - (A) d/ u seconds

(B) 2d/3u seconds

(C) 2d / $\sqrt{3}$ u seconds

(D) $d/\sqrt{3}$ u seconds

- A person is moving in a circle of radius r with constant speed v. 13. The change in velocity in moving from A to B is
 - (A) $2v \cos 40^{\circ}$

(B) 2v sin 40°

(C) 2v cos 20⁰

(D) 2v sin 20°

- 14. Two particles of same mass are projected from same place with same velocity u, such that their ranges are same. If h₁ and h₂ are the maximum heights attained by them, then the relation between h₁, h₂ and R is
 - (A) $R = h_1 h_2$
- (B) $R^2 = 16 h_1 h_2$ (C) $R^2 = h_1 / h_2$
- (d) $R^2 = h_1^2/h_2^2$
- A body is projected with velocity v_0 at an angle of projection θ . The radius of curvature of 15. trajectory at the point of projection is
 - (A) $\frac{v_0^2 \sin^2 \theta}{}$
- (C) $\frac{v_0^2}{q\sin\theta}$
- (D) $\frac{\mathsf{v}_0^2}{\mathsf{gcos}\theta}$
- The distance travelled by a body and the time 't' are related by $x = 4 3t + 2t^2$. The average 16. velocity in a time interval of 1 to 4 sec is
 - (A) 7 m/s
- (B) 10 m/s
- (C) 15 m/s
- (D) none of these
- In the last second of its free ball a body covers 3/4 of its total path. The ball falls from a height of 17.
- (A) 200 m
- (B) 100 m
- (C) 10 m
- (D) 20 m

18. A stone is dropped from a balloon ascending with velocity 2 m/s from a height of 20 m. The time of flight of the stone is

(A) 1 sec.

(B) 2 sec.

(C) 4 sec.

(D) data insufficient

19. A body moving with a uniform acceleration has velocities of u and v when passing through points A and B in its path. The velocity of the body midway between A and B is

(B) $\sqrt{\frac{u^2 + v^2}{2}}$

(C) √uv

(D) None of these

20. The relative velocity of a car 'A' with respect to car B is 30√2 m/s due North-East. The velocity of car 'B' is 20 m/s due south. The relative velocity of car 'C' with respect to car 'A' is $10\sqrt{2}$ m/s due North-West. The speed of car C and the direction (in terms of angle it makes with the east).

(A) $20\sqrt{2}$ m/s, 45°

(B) $20\sqrt{2}$ m/s, 135° (C) $10\sqrt{2}$ m/s, 45°

(D) 10√2 m/s, 135°